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Abstract  The concept of variance effective population 
size [Ne(v)] and other expressions are reviewed and de- 
scribed for specific sampling steps in germplasm collec- 
tion and regeneration of monoecious species. Special at- 
tention is given to procedures for computing the variance 
of the number of contributed gametes [V(k)] to the next 
generation. Drift, as it occurs between generations, was 
considered to contain a component due to the sampling of 
parents and a subsequent component due to the sampling 
of gametes. This demonstrates that drift, caused by reduc- 
tion of seed viability, damages the genetic integrity of ac- 
cessions stored in germplasm banks. The study shows how 
mating designs, such as plant-to-plant or chain crossings 
with additional female gametic control, can partially alle- 
viate this problem. Optimal procedures for increasing Ne(v ) 
when collecting germplasm in the field are also discussed. 
The effect of different female and male gametic control 
strategies on Ne(v ) is considered under several situations. 
Practical examples illustrating the use of V(k) and Ne(v ) 
expressions are given. 

Key words Effective population size �9 Variance of the 
number of contributed gametes �9 Genetic resources 
preservation �9 Monoecious species 

Introduction 

Germplasm conservation aims to preserve the genetic var- 
iability in a crop species by avoiding, as much as possible, 
genetic erosion. The effectiveness of a germplasm bank in 
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preserving, regenerating, and collecting germplasm de- 
pends on sampling procedures, random genetic drift, and 
seed viability. 

The effective population size, taken as a measure of the 
genetic representativeness of a seed sample, can be adapted 
to specific aspects of genetic resources preservation such 
as seed regeneration and collection. Crossa (1989) suggests 
that, in accession regeneration, germplasm banks should 
establish procedures aimed at controlling the number of 
progeny per individual or family. This author reinforces 
the known fact that equalizing the reproductive output of 
each family doubles the effective size of the population. 

The concept of effective population size was first intro- 
duced by Wright (1931) when studying breeding structure 
and genetic representativeness of an actual population as 
related to an idealized population. In an ideal population 
all individuals have equal expectation of being the parents 
of any individual progeny. However, in an arbitrary breed- 
ing population not all individuals produce progeny and, 
therefore, may not influence the genetic structure and com- 
position of the succeeding generation. Only progenitors 
that produce progeny influence the genetic constitution of 
the next generation and consequently affect the effective 
population size. 

Several factors affect the effective size of the popula- 
tion: the number of viable offspring of a given generation, 
the number of gametes contributed per individual in the 
parental generation, variation in the number of individu- 
als per generation, unequal numbers of individuals of each 
sex, or the species' natural rate of self-fertilization. All 
these factors influence the genetic contribution through 
successive generations and should therefore be considered 
when effectively measuring the size of a breeding popula- 
tion. 

Two different approaches have historically been used 
to quantify the effective population size (Crow and Kimura 
1970). The first relates a breeding population's inbreeding 
coefficient to the inbreeding of an ideal population. The 
second relates the sampling variance of allelic frequency 
in a breeding population to the sampling variance of an 
idealized population (Kimura and Crow 1963; Wright 



1969; Crow and Kimura 1970). The effective population 
size of a population, whether actual or hypothetical, is the 
size of a theoretical population that has the same inbreed- 
ing coefficient, or the same allelic frequency variance, as 
that of the actual or hypothetical population under study. 
However, researchers, in general, lack direct formulae for 
calculating the effective population size either (1) for pop- 
ulations used in artificial selection schemes (inbred line 
selection, recurrent selection, etc.) or (2) for specific pop- 
ulations used in genetic resource conservation, such as 
germplasm collection and regeneration. 

Vencovsky (1978) outlined procedures for calculating 
the variance effective population size for monoecious pop- 
ulations subjected to artificial selection. He later (Vencov- 
sky 1987) adapted some of these procedures to specific as- 
pects of germplasm collection and preservation. 

In the present study, we review and describe methods 
for calculating: (1) the variance of the number of male and 
female gametes contributed by individuals of monoecious 
species, (2) the variance effective population size relative 
to germplasm collection and accession regeneration and 
(3) the variance of the number of gametes as related to the 
mating system and the manner in which gametes (male and 
female) are sampled for germplasm collection and regen- 
eration. 

The variance effective population size [Ne(v)l 

Kimura and Crow (1963) and Crow and Kimura (1970) 
proposed two different methods of describing effective 
population size. One is the inbreeding effective size [Ne(f)] 
which is naturally dependent upon the number of individ- 
uals in the parental generation and the resulting probabil- 
ity that alleles of individuals are identical by descent. The 
second is the variance effective size [Ne(v)], which is a 
function of the number of gametes (offspring) contributed 
by individuals in a population to the next generation. The 
inbreeding effective number is related to the number of 
parents, while the variance effective number is related to 
the number of offspring. 

The concept of variance effective population size, 
which is particularly relevant to germplasm conservation, 
is defined by Crow and Kimura (1970) as 

Ne(v)=2Nt/[ { s2(k)/(k } ( 1 + ~_ 1)+( 1-~_ 1)] ( 1 ) 

where N t is the number of offspring in generation t, ~-1 is 
a measure of departure from Hardy-Weinberg equilibrium 
in the parental generation, sZ(k) and k are the variance and 
mean of the number of gametes contributed by the parents, 
respectively. Under random mating the expected value of 
~-1 i s -  1/(2Nt_1-1) (Crow and Kimura 1970). In most plant 
conservation studies, however, 2Nt_ 1 is large enough such 
that taking ~_1=0 for panmictic species will not cause a 
serious bias in Ne(v). Therefore, based on this assumption, 
the variance effective population size reduces to 

Ne(v)=2Nt/[s2(k)/k+ 1 ] (2) 
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Wright (1969) gives a similar expression for Ne(v), assum- 
ing Hardy-Weinberg proportions in the parental generation 
(Fis=0), which includes the ratio V(k)/k instead of s2(k)/k. 
In our applications of Ne e ), we will use the latter ratio with 
the Gaussian correction s~(k)=[Nt_l](Nt_l-1)] V(k), when- 
ever necessary. 

In the special case of random sampling of gametes, as- 
suming that each parent has an equal probability (1/Nt_l) 
of contributing to the next generation, k follows a bino- 
mial distribution with variance V(k)=2Nt(1/Nt_l) 
(l-1/Nt_l). Since Yk=2Nt is the total number of gametes 
contributed such that k=(Zk)/Nt_l=(2Nt)/Nt_l we have 
V(k)=k(l-1/Nt_l) and s2(k)=k, which is a Poisson variance 
for k. Consequently we get Ne(v)=N t. With large popula- 
tion sizes, s2(k) approximates V(k). 

Extended model for variance of the contributed gametes 
[V(k)] in monoecious species 

In applying Ne(v ), we consider the model proposed by Ven- 
covsky (1978) with the simplified notation Nt_I=N and 
Nt=n for the potential number of parents and number of 
offspring, respectively. 

This model assumes that from an initial set of N mono- 
ecious diploid plants, F are sampled for seed collection 
(0<F_<N). These F parents contribute both female and male 
gametes. From the remaining N-F plants, R are addition- 
ally sampled to contribute only male gametes (0<R_<N-F). 
We then have the following proportions: u=F/N and 
v=(F+R)/N=M/N for seed parents and pollen parents, re- 
spectively (0<u<l; 0<v<l). The model can accommodate 
the derivation of Ne(v) for recurrent selection schemes or 
germplasm regeneration and collection procedures. 

When M=F=N, there is no selection or sampling and all 
individuals (N) from generation t-1 potentially contribute 
male and female gametes to the next generation (t) and 
u=v=l. This is the case when an accession from a germ- 
plasm bank is regenerated, all plants are used for pollina- 
tion, and seed is harvested from all plants. However, loss 
of seeds due to germination problems may result in only a 
proportion uN=F of individuals in the initial generation 
producing progeny in the next generation. This model 
could also be used to derive the effective population size 
for germplasm collection, where F female plants are col- 
lected in the field, and a large (unknown) number of plants 
(M=N) contribute male gametes. 

Vencovsky (1978) derived the variance of the number 
of contributed gametes [V(k)] under the proposed model, 
assuming sampling of plants without replacement and tak- 
ing into consideration that N-M plants contribute no gam- 
etes. In subsequent sampling of gametes, a locus with two 
alleles was assumed, and the sampling variance in gene 
frequency was obtained following the reasoning given by 
Crow and Kimura (1970) for deriving Ne(v ). Variance of 
the number of contributed gametes is given by 

V(k)=uV(kfs)+U ( 1-u) (kfs) 2+vV (kms) -I-v( 1-v)(kms)2+ 
2u(1-v)kfskms (for u<v) (Vencovsky 1978). (3) 
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The first two terms on the right hand side of equation 3 re- 
late to a female component, the third and fourth to a male 
component, and the last is a covariance term between male 
and female gametes. With kf and k m standing for the num- 
ber of female and male gametes, we have V(kfs ) as the var- 
iance of kf within F, while V(kms ) denotes the variance of 
k m within M=F+R. With n offspring and a total of 2n gam- 
etes, kfs=n/F (mean of kf within F) and kms=n/M (mean of 
k m within M). 

Relative to female gametes there are two groups of 
plants: (1) F, contributing, on average, kfs gametes and Case 1 
(2) N-F, with zero contribution. The term 
u(l-u)(kfs-0)2=u(l-u)(kfs) 2 is the female between-groups 
component of V(kf), whereas v(l-v)(kms-0) 2 is the mate 
between-groups component of V(km). The last term of 
equation 3 is a between-groups covariance that arises from 
the two pairs of means (kfs,kms; 0, 0) and is present only 
when a set of plants is totally discarded as parents of the 
next generation. 

One basic assumption underlying V(k) (equation 3) is 
that there is no correlation between the number of female Case 2 
and male gametes contributed per individual within the set 
of F monoecious plants. Therefore, the model excludes any 
self-fertilization (natural or artificial). 

The overall means of kf and k m relative to the initial set 
of N parents are kf=n/N, km=n/N and k=(2n/N)=kf+k m. 
Variance V(k) reduces to V(kf)+V(km) when u=v=l. 

For practical purposes, we can visualize V(k) and Ne(v ) 
as being dependent upon the manner in which female and 
male gametes are sampled, the mating scheme, and the to- Case 3 
tal number of gametes, 2n. 

Another factor affecting V(k) and Ne(v ) is the propor- 
tion of parental individuals. In accession regeneration, this 
factor is the result of seed loss due to poor germination. 
We will examine how different ways of sampling female 
and male gametes affect the magnitude of V(k) (equation 
3) and the resulting Ne(v ) (equation 2). 

Ne(v) expressions for large parental population size 

Our objective is to develop manageable Ne(v ) expressions 
which are not overly dependent on underlying assumptions 
and, consequently, are useful in practical situations. As will 
be seen, considerable simplification is attained if the num- 
ber of plants (N) of the parental population is large enough 
that N/(N-1) _= 1, which also implies that V(k) = s2(k) and 
a~0.  Assuming a panmictic population of N individuals 
with n offspring stemming from F seed parents and M pol- 
len parents, according to the model, k=2n/N, u--F/N, and 
v=M/N; then, with random sampling ofn female and n male 
gametes, V(kfs ) and V(kms ) (terms of equation 3) are bino- 
mial variances 

V(kfs)=n(1/F)(l-1/F) and 

V(kms)=n (1/M)(I-I/M). 

We will describe the female, male, and covariance com- 
ponents of V(k) (equation 3) and the final form of Ne(v ) 

(equation 2) for four different alternative samplings of fe- 
male and male gametes. Case 1: no control of the number 
of male and female gametes; Case 2: control only of the 
number of female gametes; Case 3: control only of the num- 
ber of male gametes; Case 4: control of the number of fe- 
male and female gametes. Case 3 is not feasible in prac- 
tice and is included here only for theoretical comparison 
with its counterpart (Case 2). 

Pollination is at random and the number of seeds per plant 
is not controlled; that is, there is no hand pollination, and 
unequal numbers of seeds are randomly taken from F pa- 
rental plants. In this case equation 2 can be written as 

Ne(v)=n/{ l+[n(1-u)-l]/(4F)+[3n(1-v)-l]/(4 M)} (4) 
(see Appendix). 

In this case the number of female gametes is controlled by 
taking the same amount of seeds per plant, but pollination 
is at random. Then equation 2 becomes 

Ne(v)=n/{ 3/4+[n(1-u)]/(4F)+[3n(l-v)-I ]/(4 M)} (5) 
(see Appendix). 

Control of the number of male gametes through hand pol- 
lination, but unequal numbers of seeds are randomly taken 
from each plant. Then equation 2 is 

Ne(v)=n/{ 3/4+[n(1-u)-I ]/(4F)+[3n(1-v)]/(4 M)} (6) 
(see Appendix). 

Case 4 

Using hand pollination and counting equal numbers of 
seeds per plant, we achieve male and female gametic con- 
trol. Then equation 2 can be written as 

Ne(v)=n/{ 1/2+[n(l-u)]/(4F)+[3n(l-v)]/(4 M)} (7) 
(see Appendix). 

Ne(v ) in germplasm regeneration with constant 
population size 

The following are applications of equation 4 to 7 in spe- 
cific situations in which population size is kept constant 
(n=N). First, consider accession regeneration with N indi- 
viduals planted in the field; all of them provide female and 
male gametes. Therefore, M--F=N and u=v=l. Thus, for 
Case 1 equation 4 reduces to 

Ne(v)=N/[ t-(1/2N)]~_N, 
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for Cases 2 and 3 (equations 5 and 6) 

Ne(v)=N/[(3/4)- (1/4N)]-_-N(4/3), 

and for Case 4 (equation 7) Ne(v)=2N. 
Although equalizing the number of male and female 

gametes among individuals is not likely to occur in nature, 
with hand pollination, and equal numbers of seeds from 
each pollinated plant, the size of Ne(v ) is twice the magni- 
tude of N, the census population. 

Another factor affecting effective population size in 
germplasm regeneration is loss of seeds due to poor ger- 
mination. Now, with M=F, u=F/N=v=M/N are less than one 
but n=N. This is similar to mass selection prior to pollina- 
tion (selection on both sexes) and mating among F selected 
plants. For Case 1, with n=N, equation 4 reduces to 

Ne(~)=Nu/(1-1/2N)=Nu. (8) 

For Cases 2 and 3 equations 5 and 6 reduce to 

Ne(v)=N[4u/(4-u- 1/N)]=N [4u/(4-u)], (9) 

and when u=l,  Ne(v)-_~N(4/3). 
For Case 4, equation 7 becomes 

Ne(~)=N[2u/(2-u)], and (10) 

when u= 1, Ne(~)=2N. 
For example, assume that 1000 (N) seeds are collected 

and stored in a germplasm bank and that, after a certain 
number of years, the accession is regenerated. All 1000 
seeds are planted in an isolated block. Assume also that 
only 33% (u=l/3) of seeds germinate. If pollination is at 
random and unequal numbers of seeds are taken from each 
pollinated plant (Case 1), all 1000 offspring seeds will have 
Ne(v)=333 (equation 8). When only female or male gam- 
etes (but not both) are controlled (Cases 2 and 3), Ne(v ) in 
the next generation is 364 (equation 9). When pollination 
is controlled (hand pollination) and equal numbers of seeds 
are taken from each pollinated plant (Case 4), Ne(~) in the 
following generation is 400 (equation 10). 

These results demonstrate that reduction of seed viabil- 
ity can seriously affect the genetic representativeness of 
the sample and produce genetic erosion. However, appro- 
priate pollination techniques for male and female gametic 
control [i.e., plant-to-plant crossing (for male gametic con- 
trol) and retaining equal numbers of seeds per pollinated 
plant (for female gametic control)] can partially alleviate 
this problem. 

Table 1 summarizes Ne(~) expressions related to germ- 
plasm regeneration. Formulae in the last column of this ta- 
ble are applicable when there is no reduction in germina- 
tion rate, such that M=N plants are available as pollen par- 
ents (v=l), but seeds are taken from a sub-set (F<N) of 
plants. This situation resembles half-mass selection (Ven- 
covsky 1976). 

Ne(v ) in germplasm collection 

When germplasm is collected, the total number of pollina- 
tor plants (M) in the field is unknown but potentially large. 

Table 1 Ne(v) for germplasm regeneration alternatives with con- 
stant population size (n=N) and monoecious species a 

Gametic control Number of parents 

Female Male Seed -+ F=Nu Seed -+ F=Nu 
Pollen --~ M=F=Nu Pollen --~ M=N 

Ne(v) 

Yes Yes N[2u/(2-u)] N[4u/(l+u)] 
Yes No N [ 4 u / ( 4 - u ) ]  N[4u/(l+2u)] 
No No Nu N[4u/(l+3u)] 

O<u_<l; 1-(1/N)_=I 

No exact statement can be made about the proportion 
u=M/N and an extreme situation is M=N and u~ 1. If the 
number F of seed parents is a very small fraction of the en- 
tire population [such that u=(F/N)_=0] from which n seeds 
are randomly taken, from equation 4 (Case 1) 

Ne(v)=n/[(n-1)/(4F)-l/(4N)+ 1]___-n/[(n-1)/(4F)+ 1 ]. (11) 

With large n this approaches Ne(v)=4F, which is the effec- 
tive number of F half-sib families of infinite size. For Case 
2, equation 5 now has the reduced form 

Ne(v)=n/[n/( 4F)-l/( 4N)+ 3/4 ]~n/[n/( 4F)+ 3/4 ]. (12) 

Since pollen control is not possible, Cases 3 and 4 (equa- 
tions 6 and 7) do not apply here. 

Consider that n--100 seeds are randomly collected from 
F=20 plants; we have Ne(v)=45 (equation 11), but Ne(v)=50 
with equal numbers of seeds taken per plant (equation 12) 
(for Cases 1 and 2, respectively). In this case, the limiting 
factor is the number of plants (F) from which n seeds are 
taken. Obviously, as F increases, Ne(v) increases. For ex- 
ample, consider collecting a total of n=10 000 seeds using 
three sampling strategies: (1) F=100 plants (i00 seeds per 
plant), (2) F=500 plants (20 seeds per plant) and (3) F= 1000 
plants (10 seeds per plant). In the first sampling strategy, 
(F=100) Ne(v)=388, in the second sampling scheme 
(F=500) Ne(v)=1739 and in the third sampling procedure 
(F=1000) Ne(v)=3077. 

When collecting germplasm in the field, the recom- 
mended strategy is taking, at random, equal numbers 
of seeds from the largest possible number of parental 
plants. 

Direct method for calculating V(k) and Ne(v ) 

The following examples are specific mating schemes such 
that the number of contributed female and male gametes 
are known in advance. We also assume a parental popula- 
tion derived from random mating and comprising a small 
number (N) of plants. Under such circumstances s2(k) and 
k can be~computed directly from the data, with Ne(v ) nec- 
essarily incorporating the Gaussian correction and the ex- 
pected value of ~. 



940 

With n offspring and N parents, k=(2n)/N. Since 
k=kf+k m per individual we have 

V(k)=V(kf)+V(km)+2Cov(kf, km) 
Parent 

where V(kf)=(1/N) 2f(kf-kf) 2, V(km)=(1/N ) 2 m ( k m - k m )  2 number 

and Cov(km,kf)= (l/N) 2 (kf-kf)(km-km). 
Also s2(k)= [N/(N-1)]V(k). 

As already pointed out, the covariance term is a conse- 2 
quence of parental seed loss due to germination problems 3 
or any other situation in which a sub-set of plants is totally 4 
discarded prior to reproduction. 5 

6 Only when gametes are randomly drawn can we con- 
sider s2(k) as a Poisson variance, and specifically when Totals 
u=v=l we have s2(k)=s2(kf)+s2(km)=kf+km=n/N+n/N= 
2n/N=k with Cov(kf, km)=0. 

Example 

The objectives of this example are to show: (1) how to ob- 
tain exact values of Ne(v ) under specific circumstances, 
without any approximation or initial assumption and 2) the 
meaning and validity of equation 3 (variance of the num- 
ber of contributed gametes). 

Assume a parental population of N=6, where only F=2 
plants (u=0.33) germinate and survive for reproduction 
(N-F=4 plants do not contribute gametes). Assume that the 
two surviving plants are crossed reciprocally (hand polli- 
nation) and three seeds are taken from each pollination to 
recover the original six plants (Table 2). With n=N=6, pop- 
ulation size remains constant and k=2n/N=2; also 
kf=km=n/N=l. For variances we have: 

V(kf)=V(km)=(1/6) [9+9+0+0+0+0-(36/6)]=2. 

However, the variance of the total number of gametes 
(k=kf+km) per individual is 

V(k)=(1/6) [36+36+0+0+0+0-(144/6)] =8. 

Then V(k)>V(kf)+V(km), because 

2Cov(kf,km)=2(1/6) { (3•215215 } 
=4.  

Using equation 1 and taking c~=-1/(12-1) and s2(k)= 
[N/(N-1)]V(k)=(6/5)8=9.6, we obtain Ne(v)=(2)(6)/ 
[(9.6/2)(1-1/11)+(1+1/11)]=2.2. For this case equation 10 
gives the approximate value Ne(v)=612(0.33)/ 
(2-0.33)]=2.4, which is slightly biased because neither 
N/(N-1)=6/5 nor a=- l /11 are negligible. 

Applying equation 3 for comparison, we get 
V(kf)=uV(kfs)+U (1-u)(kfs)2=0+(2/6)(1-2/6)(6/2)2=2, 
V(km)=vV(kms)+V (1-v)(kms)2=0+(2/6)(1-2/6)(6/2)2=2, 
2Cov(kf, km)=2u (1-v)kfskms=2(2/6)(1-2/6)(6/2)(6/2)=4, 
and V(k)=2+2+4=8, as before. 

If alternatively we assume: (1) an initial accession size 
of N=6 individuals, (2) that pollination is not random (con- 
trol of male gametes), (3) equal numbers of seeds are taken 
from each pollination (control of female gametes), and (4) 
100% germination (u=l), then s2(k)=0, and based on equa- 
tion 1 with o~=-1/11 Ne(v)=(2)(6)/[0+(l+l/11)]=11. Using 

Table 2 Number of male and female contributed gametes with N=6 
and F=2 (u=0.33) and reciprocal crosses. Three seeds taken per 
plant a 

Contributed gametes 

kf k m k 

6 
3 6 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
6 6 12 

a Constant population size (n=N) 

Table 3 Number of male and female contributed gametes with N=6, 
u=l  and chain crosses. One seed taken per plant a 

Parent Contributed gametes 
number 

kf km k 

2 . ~ - ~  
3 .~---J 
4 .~__.__J 

6 ..,gb----I 

Totals 

l 1 2 
1 1 2 
1 1 2 
1 1 2 
l 1 2 

6 6 12 

a Constant population size (n=N) 

equation 10, we obtain the approximation Ne(v)= 
(6)[2/(2-1)]=12, bias being due to the o~=0 assumption 
used in deriving equation 10. 

Ne(v) under some mating systems for seed regeneration 

In germplasm regeneration we tend to believe that differ- 
ent mating schemes will result in different effective pop- 
ulation sizes. However, the following alternatives show 
that this is not necessarily true. In fact, when n and k are 
kept the same, Ne(v ) will depend on how a given mating 
scheme affects the variance of the number of contributed 
gametes IV(k)]. 

Pollination systems most commonly used in accession 
regeneration are chain crosses and plant-to-plant crosses 
(with or without reciprocals). We present simple examples 
of these mating systems as related to male and female ga- 
metic control. 

(1) Chain crosses. In this scheme, every plant is used as 
male and female (monoecious). It involves crossing plant 
1 with plant 2, plant 2 with plant 3, and so on up to plant 
L crossed back with plant 1 (Table 3). This generates a 
chain of n half-sib related families; that is, ear j and j+l  
are half-sibs, as are ears j+l  and j+2, and so on. From Ta- 
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Table 4 Number of male and female contributed gametes with N=6, 
u=l, and plant to plant crosses with reciprocals. One seed taken per 
plant a 

population; therefore, only practical reasons are relevant 
for choosing a specific one. 

Parent Contributed gametes 
number 

kf k m k Conclusions 

2 1 

1 lZ><  1 
6 1 
Totals 6 6 

2 
2 
2 
2 
2 
2 

12 

a Constant population size (n=N) 

Table 5 Number of male and female contributed gametes with N=6, 
u= 1, and plant to plant crosses without reciprocals. Two seeds taken 
per plant a 

Parent Contributed gametes 
number 

kf k m k 

cf 0 2 
9 3 "~b-] 2 ~ 0  2 
cf 4 ~ 0 ~--~2 2 
9 5"~P3 2 -,~--_..~ 0 2 
of 6 ] 0 ~ 2  2 

Totals 6 6 12 

a Constant population size (n=N) 

ble 3, k=kf+km=6+6=12, kf=km=l, k=2 and from the direct 
method for calculating the variance of contributed gametes, 
V(k)=0 [because V(kf)=V(km)=Cov(km,kf)=0 ]. Therefore, 
equation 1 becomes Ne(v)--(2)(6)/[0+(1+1/11)]=11. 

(2) Plant-to-plant crosses with reciprocals. This involves 
taking plants both as male and female (monoecious) (Ta- 
ble 4). From Table 4, k=kf+km=6+6= 12, kf=km=l, k=2 and 
V(k)=0 because V(kf)=V(km)=Cov(km,kf)=0. Thus, equa- 
tion 1 becomes again Ne(v)=(2)(6)/[0+(l+l/l 1)]=11. 

(3) Plant-to-plant crosses without reciprocals. This in- 
volves using plants as females or as males but not both (Ta- 
ble 5). In this scheme, the accession to be regenerated is 
considered as being dioecious. Manipulating monoecious 
plants as dioecious plants requires appropriate expressions 
for Ne(v ) for separate sexes (Crow and Denniston 1983). 
In this example, the initial population consists of Nf=3 and 
Nm=3 female and male parental plants, respectively, and 
with control of the number of gametes contributed, 
Ne(v)=SNmNf/(Nf+Nm) (Hallauer and Miranda 1981), such 
that Ne(v)=[8(3x3)l/(3+3)]=12, very close to Ne(v ) values 
obtained for monoecious schemes (Tables 3 and 4). 

For seed regeneration, all three pollination schemes pro- 
vide a similar Ne(v), doubling the actual size of the initial 

This study presents procedures for computing the variance 
of the number of contributed gametes and equations for 
calculating the variance effective population size as related 
to genetic resources preservation. In seed regeneration and 
collection, drift occurs at two stages, namely: when sam- 
pling (random selection or random loss) parents from an 
initial base population and, subsequently, when sampling 
gametes contributing to the next generation. These are the 
basic assumptions underlying equation 3, which allow ex- 
amining how the proportion of sampled parents, relative 
to the base population, affects the final Ne(v ) value. The 
model describes situations in which the proportion of sam- 
pled parents is small, such as when sampling is done in a 
species' natural habitat or when the proportion of surviv- 
ing seeds (plants) after loss of seed viability in an acces- 
sion is small. 

In germplasm collection, when the total number of seeds 
(n) is not too small, Ne(v ) is dominated by the number of 
seed parents (F) (equations 11 and 12). Upon comparing 
those two expressions, we also observed that female ga- 
metic control only has a sizeable effect on increasing Ne(v ) 
when n is small relative to F. For example, with n=F, tak- 
ing equal numbers of seeds per parent (one single seed) 
will tend to increase Ne(v ) by 25%, relative to random sam- 
pling of seeds. The appropriate strategy is to collect equal 
numbers of seeds from the largest possible number of 
plants (F). 

In accession regeneration, when gametic control keeps 
population size constant (n=N), its positive effect is more 
evident when there is no great loss in germination rate (u 
not too small). For instance, if we compare N[(2u)/(2-u)] 
with Nu (Table 1) when u=l,  we have 2N vs N; when u is 
small (e.g., u--0.1), we have (0.105) N vs (0.100) N, respec- 
tively. In this case (small u), random parental loss has an 
overwhelming effect on drift. 

Field pollination procedures, such as plant-to-plant 
crosses (with or without reciprocals) and chain crossing, 
provide an Ne(v ) that doubles the actual size of the initial 
population. 

Appendix 

Case 1 

The female component of V(k) (equation 3) can be ex- 
pressed as V(kf~)=u[n(1/F)( 1 - l/F)+( 1 -u)(n2/F2)]. After di- 
vision by k=2n/N and simplifying, we obtain the term 
(1/2)+[n(l-u)-l]/(2F). Similarly, the male component of 
V(k) can be reduced to (1/2)+[n(l-v)-l]/(2 M). The co- 
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variance component of equation 3, divided by k, 
[n(1-v)]/M. Therefore equation 2 can be written as 

Ne(v)=2n/{ l+(1/2)+[n(1-u)- l ] / (2F)+(1/2)+[n(1-v)- l ] /  
(2 M)+ [n(1-v)]/(M) }. 

After collecting similar terms and simplifying, 

Ne(v)=n/{ l+[n(1-u)- l ] / (4F)+[3n(1-v)- l ] / (4  M)}. 

Case 2 

is 

Since the number of female gametes is controlled, V(kf~)=0 
but V(kms)=n(1/M)(l-1/M). Since F=uN, the female com- 
ponent of equation 3, divided by k, is [n(1-u)]/(2F). The 
male and covariance components of equation 3 are the 
same as in Case 1. Thus equation 2 can be written as 

Ne(v)=2n/{ l+[n(1-u)] / (2F)+(1/2)+[n( l -v)- l ] /  
(2 M)+[n(l-v)]/(M) }. 

After collecting similar terms and simplifying, 

Ne(v)=n/{ 3/4+[n( l -u)] / (4F)+[3n( l -v)- l ] / (4  M) }. 

Case 3 

In this case V(kfs)=n(1/F)(1-1/F), but V(kms)=0. The 
female and covariance components of equation 3 are 
the same as in Case 1, but the male component is 
v(l-v)(n2/M2)=(l-v)(n2/MN) (because M=vN), which 
divided by k reduces to [n(l-v)]/(2 M). Thus equation 2 
is 

Ne(v)=2n/{ 1 +(1/2)+[n(1-u)- l] / (2F)+[n(l-v)] /  
(2 M)+n(l-v) / (M) }, or 

Ne(v)=n/{ 3/4+[n(1-u)- i  ]/(4F)+[3n(1-v)]/(4 M)}. 

Case 4 

Taking an equal number of seeds per plant and doing hand 
pollination produces V(kfs)=0 and V(kms)=0. After divi- 
sion by k, the female component is the same as in Case 2, 
[n(l-u)]/(2F), and the male component the same as in Case 
3 [n(l-v)]/(2 M). There is no change in the covariance term 
and equation 2 can be written as 

Ne(v)=2n/{ 1 + [n( l-u)]/(2F)+ [n( 1 -v)] /  
(2 M)+[n(1-v)]/(M) }, or 

Necv)=n/{ 1/2+[n(l-u)]/(4F)+[3n(l-v)l /(4 M) }. 
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